If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.095t^2+7.5t+31=0
a = -4.095; b = 7.5; c = +31;
Δ = b2-4ac
Δ = 7.52-4·(-4.095)·31
Δ = 564.03
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7.5)-\sqrt{564.03}}{2*-4.095}=\frac{-7.5-\sqrt{564.03}}{-8.19} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7.5)+\sqrt{564.03}}{2*-4.095}=\frac{-7.5+\sqrt{564.03}}{-8.19} $
| 0.8(y)=0.66666666667 | | 1/2x+10+135=180 | | 2/3=4/5(y) | | 9(7x-5)=27 | | -5(2z-7)=11(7-z) | | -2.5+h=10.75 | | 4/5(z-3)-8/5=-4 | | 5(9k-4)=25 | | -7(3j-1)=91 | | -6(5k+2)=198 | | (12+x)/2=17 | | -4(2j+11)=92 | | -14y+5+8=7 | | x2-x-6=38 | | 6x+9-20=0 | | 135/40=5/x | | 80=0.75x+1.50 | | (X+20)^2+(y-30)^2=225 | | 26=v/2+11 | | v/3-14=13 | | (2x+10)=28 | | (X+2)(3x)=(x-3)2 | | -x/2-1/4=3x-3 | | 4x-2×=15-9 | | 9(4x-6)=3(12x+7) | | 3(4x-12)=12(×-3) | | 3y-4=2y-3=y+2 | | -(4y+2)-(-3y-7)=3 | | 33=-7x+2(x+4) | | 2(x+5)+2x=62 | | 5(2x+3)+2(4x-2)=4(x-6) | | 9(x+9)=(4x-3) |